
Copyright © 2015 Texas Instruments Incorporated.C28X-VCU-LIB-UG-V2.10.00.00

USER’S GUIDE

VCU-II Software Library

Copyright
Copyright © 2015 Texas Instruments Incorporated. All rights reserved. ControlSUITE is a registered trademark of Texas Instruments. Other names and
brands may be claimed as the property of others.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments
12203 Southwest Freeway
Houston, TX 77477
http://www.ti.com/c2000

Revision Information
This is version V2.10.00.00 of this document, last updated on Feb 19, 2015.

Feb 19, 2015 2

Table of Contents

Table of Contents
Copyright . 2

Revision Information . 2

1 Introduction . 4

2 Other Resources . 5

3 Library Structure . 6

4 Using the VCU Library . 8

5 Application Programming Interface (VCU0) . 12
5.1 VCU0 Type Defintions . 12
5.2 Fast Fourier Transform (VCU0) . 14
5.3 Cyclic Redundancy Check (VCU0) . 21
5.4 Viterbi Decoding (VCU0) . 29

6 Application Programming Interface (VCU2) . 32
6.1 VCU2 Type Defintions . 32
6.2 Fast Fourier Transform (VCU2) . 33
6.3 Cyclic Redundancy Check (VCU2) . 45
6.4 Viterbi Decoding (VCU2) . 59
6.5 Reed Solomon Decoder (VCU2) . 64
6.6 De-Interleaver (VCU2) . 69

7 Benchmarks . 71

8 Revision History . 76

IMPORTANT NOTICE . 77

Feb 19, 2015 3

Introduction

1 Introduction
The Texas Instruments® C28x Viterbi, Complex Math and CRC Unit Type-2 (VCU2) is a fully
programmable block designed to accelerate the performance of communications and digital sig-
nal processing algorithms. The software library provides a series of assembly routines, with C
wrappers, to carry out many of the DSP algorithms listed below:

1. Complex and Real FFT

2. Viterbi Decoding

3. CRC

4. Reed-Solomon Encoding/Decoding

5. Interleaver/Deinterleaver

Chapter 2 provides a host of resources on the VCU in general, as well as training material.

Chapter 3 describes the directory structure of the package.

Chapter 4 provides step-by-step instructions on how to integrate the library into a project and use
any of the math routines.

Chapter 5 describes the programming interface, structures and routines available for VCU0

Chapter 6 describes the programming interface, structures and routines available for VCU2

The performance of each of the library routines is provided in Chapter 7 .

Chapter 8 provides a revision history of the library.

Examples have been provided for each library routine. They can be found in the examples
directory. For the current revision, all examples have been written for the F2837x device and tested
on an F2837xcontrolCard platform. Each example has a script “SetupDebugEnv.js” that can be
launched from the Scripting Console in CCS. These scripts will setup the watch variables fro the
example. In some examples graphs (.graphProp) are provided ; these can be imported into CCS
during debug.

Feb 19, 2015 4

Other Resources

2 Other Resources
The user can get answers to F2837x frequently asked questions(FAQ) from the processors wiki
page Links to other references such as training videos will be posted here as well. F2837x Wiki
Page.

Also check out the TI Delfino page: http://www.ti.com/delfino

And don’t forget the TI community website: http://e2e.ti.com

Building the VCU library and examples requires Codegen Tools v6.4.1or later

Feb 19, 2015 5

''http://processors.wiki.ti.com/index.php/Main_Page''
''http://processors.wiki.ti.com/index.php/Main_Page''
http://www.ti.com/delfino
http://e2e.ti.com

Library Structure

3 Library Structure
By default, the library and source code is installed into the following directory:

C:\TI\controlSUITE\libs\dsp\VCU\VERSION

VERSION indicates the current revision of the VCU library. Figure. 3.1 (version folder may not be
the latest) shows the directory structure while the subsequent table 3.1 provides a description for
each folder.

Figure 3.1: Directory Structure of the VCU Library

The user will note (Figure. 3.1) that the source, header and project files for the two VCU types, 0
and 2, are maintained in separate sub-directories titled vcu0 and vcu2. Each VCU type has its own
CCS project and .lib output. This allows for legacy compatibility and easy migration of projects that
use the older versions of the library.

Feb 19, 2015 6

Library Structure

Folder Description
<base> Base install directory. By default this is

C:/TI/controlSUITE/libs/dsp/VCU/v2_10_00_00 For the rest
of this document <base> will be omitted from the directory
names

<base>/ccs Project files for the library. Allows the user to reconfigure, modify
and re-build the library to suit their particular needs

<base>/cmd Linker command files used in the examples
<base>/doc Documentation for the current revision of the library including re-

vision history
<base>/examples Examples that illustrate the library functions. At the time of writ-

ing these examples were built for the F2837x device using the
CCS6.0.0.00190 platform

<base>/include Header files for the VCU library
<base>/lib Pre-built VCU libraries

<base>/source Source files for the library.

Table 3.1: VCU Library Directory Structure Description

Feb 19, 2015 7

Using the VCU Library

4 Using the VCU Library
The source code and project(s) for the VCU libraries are provided. If you import the library project(s)
into CCSv6(or later) you will be able to view and modify the source code for all routines and lookup
tables (see Fig. 4.1)

Figure 4.1: VCU Library Project View

The current version of the library(s) has two build configurations (Fig. 4.2) ISA_C2800 and
ISA_C28FPU32. The difference between the two is the ISA_C28FPU32 configuration is built
with the –fpu_support=fpu32 run-time support option turned on. This allows the VCU library
to be integrated into a project which has the fpu32 option turned on. Each build configuration,
when compiled, yields differently titled libraries: c28x_vcu<n>_library.lib for the ISA C2800 build
configuration and c28x_vcu<n>_library_fpu32.lib for the floating-point supported build.

Feb 19, 2015 8

Using the VCU Library

NOTE: ATTEMPTING TO LINK IN THE STANDARD BUILD LIBRARY INTO ANOTHER PROJECT
WHICH HAS FPU32 SUPPORT TURNED ON WILL RESULT IN A COMPILER ERROR ABOUT MISMATCH-
ING INSTRUCTION SET ARCHITECTURES, HENCE THE NEED FOR THE ISA_C28FPU32 BUILD
CONFIGURATION

Figure 4.2: Library Build Configurations

To begin integrating the library into your project follow these easy steps:

1. Go to the Project Properties->Build->Variables(Tab) and add a new variable (see Fig. 4.3),
VCU2_ROOT_DIR, and point it to the root directory of the VCU library in controlSUITE, this
is usually the version folder.

Feb 19, 2015 9

Using the VCU Library

Figure 4.3: Creating a new build variable

Add the new path, VCU2_ROOT_DIR, to the list of search directories. The paths differ de-
pending on whether you are using the vcu0 or vcu2 libraries. Fig. 4.4 shows the Include
options of two projects each using a different vcu library.

Figure 4.4: Adding the Include Search Path for the Library

2. Enable the –vcu_support option in the Runtime Model Options to either vcu0 or vcu2
depending on the library used (Fig. 4.5).

Feb 19, 2015 10

Using the VCU Library

Figure 4.5: Turning on VCU support

3. Add the name of the library and its location to the File Search Path as shown in Fig. 4.6. The
figure shows build properties for two projects, each using a different vcu library.

NOTE: IF YOUR PROJECT HAS FPU32 SUPPORT TURNED ON YOU WILL NEED TO ADD
THE c28x_vcu<n>_library_fpu32.lib LIBRARY IN THE UPPER BOX

Figure 4.6: Adding the library and location to the file search path

Feb 19, 2015 11

Application Programming Interface (VCU0)

5 Application Programming Interface (VCU0)

5.1 VCU0 Type Defintions

Data Structures

cplx16

Enumerations

CRC_parity_e

5.1.1 Data Structure Documentation

5.1.1.1 cplx16

Definition:
typedef struct
{

SINT16 real;
SINT16 imag;

}
cplx16

Members:
real Real Part.
imag Imaginary Part.

Description:
Complex data.

5.1.2 Enumeration Documentation

5.1.2.1 CRC_parity_e

Description:
Parity enumeration.

The parity is used by the CRC algorithm to determine whether to begin calculations from the
low byte (EVEN) or from the high byte (ODD) of the first word (16-bit) in the message.

For example, if your message had 10 bytes and started at the address 0x8000 but the first byte
was at the high byte position of the first 16-bit word, the user would call the CRC function with
odd parity i.e. CRC_parity_odd

Address: HI LO

0x8000 : B0 XX

Feb 19, 2015 12

Application Programming Interface (VCU0)

0x8001 : B2 B1

0x8002 : B4 B3

0x8003 : B6 B5

0x8004 : B8 B7

0x8005 : XX B9

However, if the first byte was at the low byte position of the first 16-bit word, the user would call
the CRC function with even parity i.e. CRC_parity_even

Address: HI LO

0x8000 : B1 B0

0x8001 : B3 B2

0x8002 : B5 B4

0x8003 : B7 B6

0x8004 : B9 B8

Enumerators:
CRC_parity_even Even parity, CRC starts at the low byte of the first word (16-bit).
CRC_parity_odd Odd parity, CRC starts at the high byte of the first word (16-bit).
CRC_parity_even Even parity, CRC starts at the low byte of the first word.
CRC_parity_odd Odd parity, CRC starts at the high byte of the first word.

Feb 19, 2015 13

Application Programming Interface (VCU0)

5.2 Fast Fourier Transform (VCU0)

Data Structures

cfft16_t

Defines

cfft16_128P_DEFAULTS
cfft16_256P_DEFAULTS
cfft16_64P_BREV_DEFAULTS
cfft16_64P_DEFAULTS
rfft16_128P_DEFAULTS
rfft16_256P_DEFAULTS
rfft16_512P_DEFAULTS
rifft16_128P_DEFAULTS
rifft16_256P_DEFAULTS
rifft16_64P_DEFAULTS

Functions

void cfft16_128p_calc (cfft16_t ∗cfft16_handle_s)
void cfft16_256p_calc (cfft16_t ∗cfft16_handle_s)
void cfft16_64p_calc (cfft16_t ∗cfft16_handle_s)
void cfft16_brev (cfft16_t ∗cfft16_handle_s)
void cfft16_flip_re_img (cfft16_t ∗cfft16_handle_s)
void cfft16_flip_re_img_conj (cfft16_t ∗cfft16_handle_s)
void cfft16_init (cfft16_t ∗cfft16_handle_s)
void cfft16_unpack_asm (cfft16_t ∗cfft16_handle_s)
void cifft16_pack_asm (cfft16_t ∗cfft16_handle_s)

5.2.1 Data Structure Documentation

5.2.1.1 cfft16_t

Definition:
typedef struct
{

int *ipcbptr;
int *workptr;
int *tfptr;
int size;
int nrstage;
int step;

Feb 19, 2015 14

Application Programming Interface (VCU0)

int *brevptr;
void (*init)(void *);
void (*calc)(void *);

}
cfft16_t

Members:
ipcbptr input buffer pointer
workptr work buffer pointer
tfptr twiddle factor table pointer
size Number of data points.
nrstage Number of FFT stages.
step Twiddle factor table search step.
brevptr Bit reversal table pointer.
init Function pointer to initialization routine.
calc Function pointer to calculation routine.

Description:
Complex FFT data structure.

5.2.2 Define Documentation

5.2.2.1 cfft16_128P_DEFAULTS

Definition:
#define cfft16_128P_DEFAULTS

Description:
Default values for the complex FFT structure for 128 sample points.

5.2.2.2 cfft16_256P_DEFAULTS

Definition:
#define cfft16_256P_DEFAULTS

Description:
Default values for the complex FFT structure for 256 sample points.

5.2.2.3 cfft16_64P_BREV_DEFAULTS

Definition:
#define cfft16_64P_BREV_DEFAULTS

Description:
Default values for the complex FFT structure for 64 sample points if using bit reversal lookup
table (Deprecated)

Feb 19, 2015 15

Application Programming Interface (VCU0)

5.2.2.4 cfft16_64P_DEFAULTS

Definition:
#define cfft16_64P_DEFAULTS

Description:
Default values for the complex FFT structure for 64 sample points.

5.2.2.5 rfft16_128P_DEFAULTS

Definition:
#define rfft16_128P_DEFAULTS

Description:
Default values for the complex FFT structure for 128 real sample points.

5.2.2.6 rfft16_256P_DEFAULTS

Definition:
#define rfft16_256P_DEFAULTS

Description:
Default values for the complex FFT structure for 256 real sample points.

5.2.2.7 rfft16_512P_DEFAULTS

Definition:
#define rfft16_512P_DEFAULTS

Description:
Default values for the complex FFT structure for 512 real sample points.

5.2.2.8 rifft16_128P_DEFAULTS

Definition:
#define rifft16_128P_DEFAULTS

Description:
Default values for the Real Inverse FFT structure for 128 points.

5.2.2.9 rifft16_256P_DEFAULTS

Definition:
#define rifft16_256P_DEFAULTS

Description:
Default values for the Real Inverse FFT structure for 256 points.

Feb 19, 2015 16

Application Programming Interface (VCU0)

5.2.2.10 rifft16_64P_DEFAULTS

Definition:
#define rifft16_64P_DEFAULTS

Description:
Default values for the Real Inverse FFT structure for 64 points.

5.2.3 Typedef Documentation

5.2.3.1 cfft16_handle_s

Definition:
typedef cfft16_t *cfft16_handle_s

Description:
Handle to structure.

5.2.4 Function Documentation

5.2.4.1 cfft16_128p_calc

Calculate the 128 pt Complex FFT.

Prototype:
void
cfft16_128p_calc(cfft16_t *cfft16_handle_s)

Parameters:
cfft16_handle_s Handle to the FFT structure

See also:
cfft16_brev for memory alignment requirements

5.2.4.2 void cfft16_256p_calc (cfft16_t ∗ cfft16_handle_s)

Calculate the 256 pt Complex FFT.

Parameters:
cfft16_handle_s Handle to the FFT structure

See also:
cfft16_brev for memory alignment requirements

5.2.4.3 void cfft16_64p_calc (cfft16_t ∗ cfft16_handle_s)

Calculate the 64 pt Complex FFT.

Feb 19, 2015 17

Application Programming Interface (VCU0)

Parameters:
cfft16_handle_s Handle to the FFT structure

5.2.4.4 void cfft16_brev (cfft16_t ∗ cfft16_handle_s)

Bit-Reversed Indexing.

Rearranges the input data in bit-reveresed index format. If the number of FFT stages is even, the
data is bit-reversed into the work buffer and then copied back to the input buffer. In this respect
the bit reversal is considered to be in-place. For an odd number of stages the bit-reversed output
is placed in the work buffer (off-place). The FFT (not the bit reversal function) will then transfer the
data back to the input buffer pointed to by ipcbptr

Parameters:
cfft16_handle_s Handle to the FFT structure

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer in words
(16-bit). For example, the 128 point complex FFT requires an input buffer of size 256 words
(16-bit), therefore it must be aligned to a boundary of 256. This can be done by assigning
the array to a named section (fftInput) using compiler pragmas (in the example, the input is
assigned to .econst and aligned to a boundary of 256 using the .align assembler directive)

#pragma DATA_SECTION (CFFT16_128p_in_data, "fftInput")

and then either assigning this memory to the start of a RAM block in the linker command file,
as is done in the examples, or aligning it to a boundary using the align directive

fftInput : > RAMLS4, ALIGN = 256, PAGE = 1

5.2.4.5 void cfft16_flip_re_img (cfft16_t ∗ cfft16_handle_s)

Flip real and imaginary parts of complex number.

This functions is needed in the computation of real FFTs to ensure that the real part of the complex
number always ends up at the high word (16-bit) of a 32 bit address

Parameters:
cfft16_handle_s Handle to the FFT structure

5.2.4.6 void cfft16_flip_re_img_conj (cfft16_t ∗ cfft16_handle_s)

Flip real and imaginary parts of complex number and conjugate.

This functions is needed in the computation of real IFFTs to ensure that the real part of the complex
number always ends up at the high word (16-bit) of a 32 bit address

Parameters:
cfft16_handle_s Handle to the FFT structure

Feb 19, 2015 18

Application Programming Interface (VCU0)

5.2.4.7 void cfft16_init (cfft16_t ∗ cfft16_handle_s)

Twiddle Factor Table Initialization.

Initializes the tfptr (twiddle factor pointer)to the start of the twiddle factor table in memory

Parameters:
cfft16_handle_s Handle to the FFT structure

5.2.4.8 void cfft16_unpack_asm (cfft16_t ∗ cfft16_handle_s)

Real FFT Unpack.

When using an N/2 pt complex FFT to compute the N-pt real FFT, the re-
sult of the complex FFT must be unpacked to get the real value. Refer to
http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM for the complete derivation
and explanation of the algorithm

Parameters:
cfft16_handle_s Handle to the FFT structure

5.2.4.9 void cifft16_pack_asm (cfft16_t ∗ cfft16_handle_s)

complex IFFT pack

When calculating the IFFT of a Real FFT, the data must be packed before using the complex IFFT
to get the result. Refer to http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM for
the complete derivation and explanation of the algorithm

Parameters:
cfft16_handle_s Handle to the FFT structure

5.2.5 Real Fast Fourier Transform

It is possible to run the Fast Fourier Transform on a sequence of real data using the complex FFT.
For a 2N point real sequence, the user would treat the data as N-pt complex (no rearrangement
required) and run it through an N point complex FFT. In order to derive the correct spectrum, you
would have to “unpack” the output. The derivations can be found here:

http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM

Similarly, to run an inverse Real FFT, the user would “pack” the data and either run it through
an N-point Inverse Complex FFT or an N-point Forward Complex FFT and then conjugating its
complex output. Please see the examples folder for how this is done.

Note 1 When running an inverse real FFT after the forward real FFT, the user must take care to first
switch the Input and Output pointers in the FFT object before calling the FFT routine again

Note 2 Because the buffers are switched for the inverse FFT, they must both be aligned to a 2N
word boundary.

Feb 19, 2015 19

http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM

Application Programming Interface (VCU0)

Note 3 The pack, unpack, and FFT routines scale down the input data to prevent overflows.
Therefore, the output of the real inverse FFT process will be a scaled down version of the
original. The user may choose to scale the output of intermediate operations to prevent small
values being zeroed out

See also:
cfft16_unpack_asm, cifft16_pack_asm, cfft16_flip_re_img, cfft16_flip_re_img_conj

Feb 19, 2015 20

Application Programming Interface (VCU0)

5.3 Cyclic Redundancy Check (VCU0)

Defines

INIT_CRC16
INIT_CRC32
INIT_CRC8
POLYNOMIAL16_1
POLYNOMIAL16_2
POLYNOMIAL32
POLYNOMIAL8

Functions

void CRC_reset (void)
void genCRC16P1Table ()
void genCRC16P2Table ()
void genCRC32Table ()
void genCRC8Table ()
uint16 getCRC16P1_cpu (uint16 input_crc16_accum, uint16 ∗msg, CRC_parity_e parity,
uint16 rxLen)
uint16 getCRC16P1_vcu (uint32 input_crc16_accum, uint16 ∗msg, CRC_parity_e parity,
uint16 rxLen)
uint16 getCRC16P2_cpu (uint16 input_crc16_accum, uint16 ∗msg, CRC_parity_e parity,
uint16 rxLen)
uint16 getCRC16P2_vcu (uint32 input_crc16_accum, uint16 ∗msg, CRC_parity_e parity,
uint16 rxLen)
uint32 getCRC32_cpu (uint32 input_crc32_accum, uint16 ∗msg, CRC_parity_e parity, uint16
rxLen)
uint32 getCRC32_vcu (uint32 input_crc32_accum, uint16 ∗msg, CRC_parity_e parity, uint16
rxLen)
uint16 getCRC8_cpu (uint16 input_crc8_accum, uint16 ∗msg, CRC_parity_e parity, uint16
rxLen)
uint16 getCRC8_vcu (uint32 input_crc8_accum, uint16 ∗msg, CRC_parity_e parity, uint16
rxLen)

5.3.1 Define Documentation

5.3.1.1 INIT_CRC16

Definition:
#define INIT_CRC16

Description:
Initial CRC Register Value.

Feb 19, 2015 21

Application Programming Interface (VCU0)

5.3.1.2 INIT_CRC32

Definition:
#define INIT_CRC32

Description:
Initial CRC Register Value.

5.3.1.3 INIT_CRC8

Definition:
#define INIT_CRC8

Description:
Initial CRC Register Value.

5.3.1.4 POLYNOMIAL16_1

Definition:
#define POLYNOMIAL16_1

Description:
CRC16 802.15.4 Polynomial.

5.3.1.5 POLYNOMIAL16_2

Definition:
#define POLYNOMIAL16_2

Description:
CRC16 Alternate Polynomial.

5.3.1.6 POLYNOMIAL32

Definition:
#define POLYNOMIAL32

Description:
CRC32 PRIME Polynomial.

5.3.1.7 POLYNOMIAL8

Definition:
#define POLYNOMIAL8

Description:
CRC8 PRIME Polynomial.

Feb 19, 2015 22

Application Programming Interface (VCU0)

5.3.2 Function Documentation

5.3.2.1 CRC_reset

Workaround to the silicon issue of first VCU calculation on power up being erroneous.

Prototype:
void
CRC_reset(void)

Description:
Due to the internal power-up state of the VCU module, it is possible that the first CRC result will
be incorrect. This condition applies to the first result from each of the eight CRC instructions.
This rare condition can only occur after a power-on reset, but will not necessarily occur on every
power on. A warm reset will not cause this condition to reappear. The application can reset the
internal VCU CRC logic by performing a CRC calculation of a single byte in the initialization
routine. This routine only needs to perform one CRC calculation and can use any of the CRC
instructions

5.3.2.2 void genCRC16P1Table ()

Generate the CRC lookup table using the polynomial 0x8005.

This function generates the CRC16 table for every possible byte, i.e. 2∧8 = 256 table values,
using the CRC16_802_15_4 polynomial 0x8005. It expects a global array, crc16p1_table, to
be defined in the application code

5.3.2.3 void genCRC16P2Table ()

Generate the CRC lookup table using the polynomial 0x1021.

This function generates the CRC16 table for every possible byte, i.e. 2∧8 = 256 table values,
using the CRC16_ALT polynomial 0x1021. It expects a global array, crc16p2_table, to be
defined in the application code

5.3.2.4 void genCRC32Table ()

Generate the CRC lookup table using the polynomial 0x04c11db7.

This function generates the CRC32 table for every possible byte, i.e. 2∧8 = 256 table values,
using the CRC32_PRIME polynomial 0x04c11db7. It expects a global array, crc32_table, to be
defined in the application code

5.3.2.5 void genCRC8Table ()

Generate the CRC lookup table using the polynomial 0x7.

This function generates the CRC8 table for every possible byte, i.e. 2∧8 = 256 table values,
using the CRC8_PRIME polynomial 0x07. It expects a global array, crc8_table, to be defined
in the application code

Feb 19, 2015 23

Application Programming Interface (VCU0)

5.3.2.6 uint16 getCRC16P1_cpu (uint16 input_crc16_accum, uint16 ∗ msg,
CRC_parity_e parity, uint16 rxLen)

C- function to get the 16-bit CRC.

Calculate the 16-bit CRC of a message buffer by using the lookup table, crc16p1_table, based
on the polynomial 0x8005.

Parameters:
input_crc16_accum The seed value for the CRC, in the event of a multi-part message, the

result of the previous crc16 can be used as the initial value for the current segment crc16
calculation until the final crc is derived.

msg Address of the message buffer
parity Parity of the first message word. The parity determines whether the CRC begins at the

low byte (CRC_parity_even) or at the high byte (CRC_parity_odd) of the first word
rxLen Length of the message in bytes

Returns:
CRC result

5.3.2.7 getCRC16P1_vcu

VCU(ASM)- function to get the 16-bit CRC.

Prototype:
uint16
getCRC16P1_vcu(uint32 input_crc16_accum,

uint16 *msg,
CRC_parity_e parity,
uint16 rxLen)

Description:
Calculate the 16-bit CRC of a message buffer by using the VCU instructions VCRC16P1H_1
and VCRC16P1L_1

Parameters:
input_crc16_accum The seed value for the CRC, in the event of a multi-part message, the

result of the previous crc16 can be used as the initial value for the current segment crc16
calculation until the final crc is derived.

msg Address of the message buffer
parity Parity of the first message word. The parity determines whether the CRC begins at the

low byte (CRC_parity_even) or at the high byte (CRC_parity_odd) of the first word
rxLen Length of the message in bytes

Returns:
CRC result

5.3.2.8 getCRC16P2_cpu

C- function to get the 16-bit CRC.

Feb 19, 2015 24

Application Programming Interface (VCU0)

Prototype:
uint16
getCRC16P2_cpu(uint16 input_crc16_accum,

uint16 *msg,
CRC_parity_e parity,
uint16 rxLen)

Description:
Calculate the 16-bit CRC of a message buffer by using the lookup table, crc16p2_table, based
on the polynomial 0x1021.

Parameters:
input_crc16_accum The seed value for the CRC, in the event of a multi-part message, the

result of the previous crc16 can be used as the initial value for the current segment crc16
calculation until the final crc is derived.

msg Address of the message buffer
parity Parity of the first message word. The parity determines whether the CRC begins at the

low byte (CRC_parity_even) or at the high byte (CRC_parity_odd) of the first word
rxLen Length of the message in bytes

Returns:
CRC result

5.3.2.9 getCRC16P2_vcu

VCU(ASM)- function to get the 16-bit CRC.

Prototype:
uint16
getCRC16P2_vcu(uint32 input_crc16_accum,

uint16 *msg,
CRC_parity_e parity,
uint16 rxLen)

Description:
Calculate the 16-bit CRC of a message buffer by using the VCU instructions VCRC16P2H_1
and VCRC16P2L_1

Parameters:
input_crc16_accum The seed value for the CRC, in the event of a multi-part message, the

result of the previous crc16 can be used as the initial value for the current segment crc16
calculation until the final crc is derived.

msg Address of the message buffer
parity Parity of the first message word. The parity determines whether the CRC begins at the

low byte (CRC_parity_even) or at the high byte (CRC_parity_odd) of the first word
rxLen Length of the message in bytes

Returns:
CRC result

Feb 19, 2015 25

Application Programming Interface (VCU0)

5.3.2.10 getCRC32_cpu

C- function to get the 32-bit CRC.

Prototype:
uint32
getCRC32_cpu(uint32 input_crc32_accum,

uint16 *msg,
CRC_parity_e parity,
uint16 rxLen)

Description:
Calculate the 32-bit CRC of a message buffer by using the lookup table, crc32_table, based on
the polynomial 0x04c11db7.

Parameters:
input_crc32_accum The seed value for the CRC, in the event of a multi-part message, the

result of the previous crc32 can be used as the initial value for the current segment crc32
calculation until the final crc is derived.

msg Address of the message buffer
parity Parity of the first message word. The parity determines whether the CRC begins at the

low byte (CRC_parity_even) or at the high byte (CRC_parity_odd) of the first word
rxLen Length of the message in bytes

Returns:
CRC result

5.3.2.11 getCRC32_vcu

VCU(ASM)- function to get the 32-bit CRC.

Prototype:
uint32
getCRC32_vcu(uint32 input_crc32_accum,

uint16 *msg,
CRC_parity_e parity,
uint16 rxLen)

Description:
Calculate the 32-bit CRC of a message buffer by using the VCU instructions VCRC32H_1 and
VCRC32L_1

Parameters:
input_crc32_accum The seed value for the CRC, in the event of a multi-part message, the

result of the previous crc32 can be used as the initial value for the current segment crc32
calculation until the final crc is derived.

msg Address of the message buffer
parity Parity of the first message word. The parity determines whether the CRC begins at the

low byte (CRC_parity_even) or at the high byte (CRC_parity_odd) of the first word
rxLen Length of the message in bytes

Returns:
CRC result

Feb 19, 2015 26

Application Programming Interface (VCU0)

5.3.2.12 getCRC8_cpu

C- function to get the 8-bit CRC.

Prototype:
uint16
getCRC8_cpu(uint16 input_crc8_accum,

uint16 *msg,
CRC_parity_e parity,
uint16 rxLen)

Description:
Calculate the 8-bit CRC of a message buffer by using the lookup table, crc8_table, based on
the polynomial 0x7.

Parameters:
input_crc8_accum The seed value for the CRC, in the event of a multi-part message, the

result of the previous crc8 can be used as the initial value for the current segment crc8
calculation until the final crc is derived.

msg Address of the message buffer
parity Parity of the first message word. The parity determines whether the CRC begins at the

low byte (CRC_parity_even) or at the high byte (CRC_parity_odd) of the first word
rxLen Length of the message in bytes

Returns:
CRC result

5.3.2.13 getCRC8_vcu

VCU(ASM)- function to get the 8-bit CRC.

Prototype:
uint16
getCRC8_vcu(uint32 input_crc8_accum,

uint16 *msg,
CRC_parity_e parity,
uint16 rxLen)

Description:
Calculate the 8-bit CRC of a message buffer by using the VCU instructions, VCRC8L_1 and
VCRC8H_1

Parameters:
input_crc8_accum The seed value for the CRC, in the event of a multi-part message, the

result of the previous crc8 can be used as the initial value for the current segment crc8
calculation until the final crc is derived.

msg Address of the message buffer
parity Parity of the first message word. The parity determines whether the CRC begins at

the low byte (CRC_parity_even) or at the high byte (CRC_parity_odd) of the first word
determines whether the CRC begins at the low byte (EVEN) or at the high byte (ODD).

rxLen Length of the message in bytes

Feb 19, 2015 27

Application Programming Interface (VCU0)

Returns:
CRC result

Feb 19, 2015 28

Application Programming Interface (VCU0)

5.4 Viterbi Decoding (VCU0)

Enumerations

vitMode_t

Functions

void cnvDec_asm (int nBits, int ∗in_p, int ∗out_p, int flag)
void cnvDecInit_asm (int nTranBits)
void cnvDecMetricRescale_asm ()

Variables

int32 VIT_gold_vt_data[]
int16 VIT_in_data[]
int16 VIT_quant_data[]

5.4.1 Enumeration Documentation

5.4.1.1 vitMode_t

Description:
Viterbi decode mode enumeration.

Enumerators:
CNV_DEC_MODE_DEC_ALL Decodes all output bits.
CNV_DEC_MODE_OVLP_INIT Use window overlap method, only metrics and transitions

update
CNV_DEC_MODE_OVLP_DEC Use window overlap method, update transi-

tions/metrics/trace through current & previous blocks, decode previous block only

CNV_DEC_MODE_OVLP_LAST last block in overlap

5.4.2 Function Documentation

5.4.2.1 cnvDec_asm

Viterbi Decoder

Prototype:
void
cnvDec_asm(int nBits,

int *in_p,
int *out_p,
int flag)

Feb 19, 2015 29

Application Programming Interface (VCU0)

Description:
This routine performs the trellis decoding. It has four modes of operation

0: Update metrics and transition history, trace and decodes all (for header packets)
1: Update metrics and transition history for only 1st block in payload
2: Update metrics and transition history, trace back through the current and previous
blocks, decodes previos block giving nBits/2 bits
3: Update metrics and transition history, trace back through the current and previous
blocks, decodes current and previos block giving nBits/2 bits

Parameters:
nBits Number of Coded bits for this block
in_p Address of input buffer
out_p Address of output buffer
flag Mode of operation

5.4.2.2 cnvDecInit_asm

Initialize Viterbi Decoder.

Prototype:
void
cnvDecInit_asm(int nTranBits)

Description:
Initialize state metric table to a large negative value given by CNV_DEC_METRIC_INIT and
initialize the transition and wrap pointers

Parameters:
nTranBits Number of Coded bits

5.4.2.3 cnvDecMetricRescale_asm

State Metrics Rescale.

Prototype:
void
cnvDecMetricRescale_asm()

Description:
Rescale the state metrics by finding the lowest metric and dividing the rest by it. This prevents
overflow between successive decoder stages

5.4.3 Variable Documentation

5.4.3.1 int32 VIT_gold_vt_data[]

Golden trace history (VT0/VT1); can be used to verify functionality.

Feb 19, 2015 30

Application Programming Interface (VCU0)

5.4.3.2 int16 VIT_in_data[]

Input fed into the C-model encoder.

5.4.3.3 int16 VIT_quant_data[]

Output from the C-model encoder.

Feb 19, 2015 31

Application Programming Interface (VCU2)

6 Application Programming Interface
(VCU2)

6.1 VCU2 Type Defintions

Data Structures

complexShort_t

Enumerations

Bool_e

6.1.1 Data Structure Documentation

6.1.1.1 complexShort_t

Definition:
typedef struct
{

int16_t real;
int16_t imag;

}
complexShort_t

Members:
real Real Part.
imag Imaginary Part.

Description:
Complex data (CPACK = 0).

On reset the CPACK bit is 0, therefore, this is the default complex structure

6.1.2 Enumeration Documentation

6.1.2.1 Bool_e

Description:
Boolean enumeration.

Feb 19, 2015 32

Application Programming Interface (VCU2)

6.2 Fast Fourier Transform (VCU2)

Data Structures

_CFFT_Obj_

Functions

void CFFT_conjugate (void ∗pBuffer, uint16_t size)

void CFFT_init1024Pt (CFFT_Handle hndCFFT)

void CFFT_init128Pt (CFFT_Handle hndCFFT)

void CFFT_init256Pt (CFFT_Handle hndCFFT)

void CFFT_init32Pt (CFFT_Handle hndCFFT)

void CFFT_init512Pt (CFFT_Handle hndCFFT)

void CFFT_init64Pt (CFFT_Handle hndCFFT)

void CFFT_pack (CFFT_Handle hndCFFT)

void CFFT_run1024Pt (CFFT_Handle hndCFFT)

void CFFT_run128Pt (CFFT_Handle hndCFFT)

void CFFT_run256Pt (CFFT_Handle hndCFFT)

void CFFT_run32Pt (CFFT_Handle hndCFFT)

void CFFT_run512Pt (CFFT_Handle hndCFFT)

void CFFT_run64Pt (CFFT_Handle hndCFFT)

void CFFT_unpack (CFFT_Handle hndCFFT)

void ICFFT_run1024Pt (CFFT_Handle hndCFFT)

void ICFFT_run128Pt (CFFT_Handle hndCFFT)

void ICFFT_run256Pt (CFFT_Handle hndCFFT)

void ICFFT_run32Pt (CFFT_Handle hndCFFT)

void ICFFT_run512Pt (CFFT_Handle hndCFFT)

void ICFFT_run64Pt (CFFT_Handle hndCFFT)

Variables

const int16_t ∗ vcu0_twiddleFactors

const int16_t ∗ vcu2_twiddleFactors

Feb 19, 2015 33

Application Programming Interface (VCU2)

6.2.1 Data Structure Documentation

6.2.1.1 _CFFT_Obj_

Definition:
typedef struct
{

int16_t *pInBuffer;
int16_t *pOutBuffer;
const int16_t *pTwiddleFactors;
int16_t nSamples;
int16_t nStages;
int16_t twiddleSkipStep;
void (*init)(void *);
void (*run)(void *);

}
_CFFT_Obj_

Members:
pInBuffer Input buffer pointer.
pOutBuffer Output buffer pointer.
pTwiddleFactors Twiddle Factor pointer.
nSamples Number of samples.
nStages HASH(0x2d71498)
twiddleSkipStep Twiddle factor table search(skip) step.
init Function pointer to CFFT initialization routine.
run Function pointer to CFFT computation routine.

Description:
CFFT structure.

6.2.2 Function Documentation

6.2.2.1 CFFT_conjugate

Take the complex conjugate of the entries in an array of complex numbers.

Prototype:
void
CFFT_conjugate(void *pBuffer,

uint16_t size)

Parameters:
pBuffer Pointer to the buffer of complex data to be conjugated
← size Size of the buffer (multiple of 2 32-bits locations)

6.2.2.2 void CFFT_init1024Pt (CFFT_Handle hndCFFT)

Initializes the CFFT object.

Feb 19, 2015 34

Application Programming Interface (VCU2)

Parameters:
← hndCFFT handle to the CFFT object

6.2.2.3 void CFFT_init128Pt (CFFT_Handle hndCFFT)

Initializes the CFFT object.

Parameters:
← hndCFFT handle to the CFFT object

6.2.2.4 void CFFT_init256Pt (CFFT_Handle hndCFFT)

Initializes the CFFT object.

Parameters:
← hndCFFT handle to the CFFT object

6.2.2.5 void CFFT_init32Pt (CFFT_Handle hndCFFT)

Initializes the CFFT object.

This routine is used to initialize the CFFT object and must be called atleast once before
using either the CFFT or ICFFT routines

Parameters:
← hndCFFT handle to the CFFT object

6.2.2.6 void CFFT_init512Pt (CFFT_Handle hndCFFT)

Initializes the CFFT object.

Parameters:
← hndCFFT handle to the CFFT object

6.2.2.7 void CFFT_init64Pt (CFFT_Handle hndCFFT)

Initializes the CFFT object.

Parameters:
← hndCFFT handle to the CFFT object

6.2.2.8 void CFFT_pack (CFFT_Handle hndCFFT)

Pack the input prior to running the inverse complex FFT to get the real inverse FFT.

In order to reverse the process of the forward real FFT,

Fe(k) =
F (k) + F (N2 − k)

∗

2

Feb 19, 2015 35

Application Programming Interface (VCU2)

Fo(k) =
F (k)− F (N2 − k)

∗

2
e
j2πk
N

where fe is the even elements, fo the odd elements. The array for the IFFT then becomes:

Z(k) = Fe(k) + jFo(k), k = 0...
N

2
− 1

Parameters:
← hndCFFT handle to the CFFT object

Note:
This is an in-place algorithm; the routine writes the output to the input buffer itself
The assumption is that the user will run the packed sequence through an IFFT
sequence i.e. conjugate -> Forward FFT -> conjugate. The packed output is conju-
gated in this routine obviating the need for the first conjugate in the IFFT sequence

See also:
http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM for the entire
derivation

6.2.2.9 void CFFT_run1024Pt (CFFT_Handle hndCFFT)

Runs the Complex FFT routine.

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 1024 point complex FFT requires an input buffer of
size 2048 words (16-bit), therefore it must be aligned to a boundary of 2048. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMGS4, ALIGN = 2048, PAGE = 1

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.10 void CFFT_run128Pt (CFFT_Handle hndCFFT)

Runs the Complex FFT routine.

Parameters:
← hndCFFT handle to the CFFT object

Feb 19, 2015 36

http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM

Application Programming Interface (VCU2)

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 128 point complex FFT requires an input buffer of
size 256 words (16-bit), therefore it must be aligned to a boundary of 256. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMLS3, ALIGN = 256, PAGE = 1

6.2.2.11 void CFFT_run256Pt (CFFT_Handle hndCFFT)

Runs the Complex FFT routine.

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 256 point complex FFT requires an input buffer of
size 512 words (16-bit), therefore it must be aligned to a boundary of 512. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMLS3, ALIGN = 512, PAGE = 1

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.12 void CFFT_run32Pt (CFFT_Handle hndCFFT)

Runs the Complex FFT routine.

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 32 point complex FFT requires an input buffer of
size 64 words (16-bit), therefore it must be aligned to a boundary of 64. This can be
done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

Feb 19, 2015 37

Application Programming Interface (VCU2)

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMLS3, ALIGN = 64, PAGE = 1

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.13 void CFFT_run512Pt (CFFT_Handle hndCFFT)

Runs the Complex FFT routine.

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 512 point complex FFT requires an input buffer of
size 1024 words (16-bit), therefore it must be aligned to a boundary of 1024. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMGS4, ALIGN = 1024, PAGE = 1

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.14 void CFFT_run64Pt (CFFT_Handle hndCFFT)

Runs the Complex FFT routine.

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 64 point complex FFT requires an input buffer of
size 128 words (16-bit), therefore it must be aligned to a boundary of 128. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

Feb 19, 2015 38

Application Programming Interface (VCU2)

buffer1 : > RAMLS3, ALIGN = 128, PAGE = 1

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.15 void CFFT_unpack (CFFT_Handle hndCFFT)

Unpack the complex FFT output to get the FFT of two interleaved real sequences.

In order to get the FFT of a real N-pt sequences, we treat the input as an N/2 pt com-
plex sequence, take its complex FFT, use the following properties to get the N-pt Fourier
transform of the real sequence

FFTn(k, f) = FFTN/2(k, fe) + e
−j2πk
N FFTN/2(k, fo)

where fe is the even elements, fo the odd elements and

Fe(k) =
Z(k) + Z(N2 − k)

∗

2

Fo(k) = −j
Z(k)− Z(N2 − k)

∗

2

We get the first N/2 points of the FFT by combining the above two equations

F (k) = Fe(k) + e
−j2πk
N Fo(k)

Parameters:
← hndCFFT handle to the CFFT object

Note:
This is an in-place algorithm; the routine writes the output to the input buffer itself

See also:
http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM for the entire
derivation

6.2.2.16 void ICFFT_run1024Pt (CFFT_Handle hndCFFT)

Runs the Complex Inverse FFT routine.

Run the forward FFT on the input and rearrange the output as follows:

x(0) = x′(0)

x(n) = x′(N − n), n ∈ {1, N − 1}
, where N is the sample size

Parameters:
← hndCFFT handle to the CFFT object

Feb 19, 2015 39

http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM

Application Programming Interface (VCU2)

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 1024 point complex FFT requires an input buffer of
size 2048 words (16-bit), therefore it must be aligned to a boundary of 2048. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMGS4, ALIGN = 2048, PAGE = 1

If the output buffer of the forward FFT becomes the input to the IFFT, then it must be
aligned to the same word (16-bit) boundary as well.

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.17 void ICFFT_run128Pt (CFFT_Handle hndCFFT)

Runs the Complex Inverse FFT routine.

Run the forward FFT on the input and rearrange the output as follows:

x(0) = x′(0)

x(n) = x′(N − n), n ∈ {1, N − 1}

, where N is the sample size

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 128 point complex FFT requires an input buffer of
size 256 words (16-bit), therefore it must be aligned to a boundary of 256. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMLS3, ALIGN = 256, PAGE = 1

If the output buffer of the forward FFT becomes the input to the IFFT, then it must be
aligned to the same word (16-bit) boundary as well.

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the

Feb 19, 2015 40

Application Programming Interface (VCU2)

output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.18 void ICFFT_run256Pt (CFFT_Handle hndCFFT)

Runs the Complex Inverse FFT routine.

Run the forward FFT on the input and rearrange the output as follows:

x(0) = x′(0)

x(n) = x′(N − n), n ∈ {1, N − 1}

, where N is the sample size

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 256 point complex FFT requires an input buffer of
size 512 words (16-bit), therefore it must be aligned to a boundary of 512. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMLS3, ALIGN = 512, PAGE = 1

If the output buffer of the forward FFT becomes the input to the IFFT, then it must be
aligned to the same word (16-bit) boundary as well.

6.2.2.19 void ICFFT_run32Pt (CFFT_Handle hndCFFT)

Runs the Complex Inverse FFT routine.

Run the forward FFT on the input and rearrange the output as follows:

x(0) = x′(0)

x(n) = x′(N − n), n ∈ {1, N − 1}

, where N is the sample size

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 32 point complex FFT requires an input buffer of
size 64 words (16-bit), therefore it must be aligned to a boundary of 64. This can be
done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

Feb 19, 2015 41

Application Programming Interface (VCU2)

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMLS3, ALIGN = 64, PAGE = 1

If the output buffer of the forward FFT becomes the input to the IFFT, then it must be
aligned to the same word (16-bit) boundary as well.

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.20 void ICFFT_run512Pt (CFFT_Handle hndCFFT)

Runs the Complex Inverse FFT routine.

Run the forward FFT on the input and rearrange the output as follows:

x(0) = x′(0)

x(n) = x′(N − n), n ∈ {1, N − 1}

, where N is the sample size

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 512 point complex FFT requires an input buffer of
size 1024 words (16-bit), therefore it must be aligned to a boundary of 1024. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMGS4, ALIGN = 1024, PAGE = 1

If the output buffer of the forward FFT becomes the input to the IFFT, then it must be
aligned to the same word (16-bit) boundary as well.

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.2.21 void ICFFT_run64Pt (CFFT_Handle hndCFFT)

Runs the Complex Inverse FFT routine.

Feb 19, 2015 42

Application Programming Interface (VCU2)

Run the forward FFT on the input and rearrange the output as follows:

x(0) = x′(0)

x(n) = x′(N − n), n ∈ {1, N − 1}

, where N is the sample size

Parameters:
← hndCFFT handle to the CFFT object

Attention:
For bit reverse addressing to work, the input buffer must be aligned to size of the buffer
in words (16-bit). For example, the 64 point complex FFT requires an input buffer of
size 128 words (16-bit), therefore it must be aligned to a boundary of 128. This can
be done by assigning the array to a named section (buffer1) using compiler pragmas

#pragma DATA_SECTION(buffer1Q15,"buffer1")

and then either assigning this memory to the start of a RAM block in the linker com-
mand file or aligning it to a boundary using the align directive

buffer1 : > RAMLS3, ALIGN = 128, PAGE = 1

If the output buffer of the forward FFT becomes the input to the IFFT, then it must be
aligned to the same word (16-bit) boundary as well.

Note:
The algorithm ping-pongs between the two buffers, i.e. the buffers pointed to by pIn-
Buffer and pOutBuffer, at every stage. Depending on the number of stages the
output may be in either of the two buffers; the algorithm will switch the pointers pOut-
Buffer and pInBuffer in the event that the output ends up in the original input buffer,
with the end result that pOutBuffer always points to the output.

6.2.3 Variable Documentation

6.2.3.1 const int16_t∗ vcu0_twiddleFactors

VCU0 twiddle factors.

6.2.3.2 const int16_t∗ vcu2_twiddleFactors

VCU2 twiddle factors.

6.2.4 Real Fast Fourier Transform

It is possible to run the Fast Fourier Transform on a sequence of real data using the
complex FFT. For a 2N point real sequence, the user would treat the data as N-pt complex
(no rearrangement required) and run it through an N point complex FFT. In order to derive
the correct spectrum, you would have to “unpack” the output. The derivations can be
found here:

Feb 19, 2015 43

Application Programming Interface (VCU2)

http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM

Similarly, to run an inverse Real FFT, the user would “pack” the data and run it
through an N-point Forward Complex FFT and then conjugate its complex output to get
the original signal.

Note 1 When running an inverse real FFT after the forward real FFT, the user must take
care to first switch the Input (pInBuffer) and Output (pOutBuffer) pointers in the FFT
object before calling the FFT routine again

Note 2 Because the buffers are switched for the inverse FFT, they must both be aligned
to a 2N word boundary. buffer1Q15 must be aligned since it is the input to the forward
real FFT, while buffer2Q15 is the input to the inverse real FFT; it must also be aligned

Note 3 The pack, unpack, and FFT routines scale down the input data to prevent over-
flows. Therefore, the output of the real inverse FFT process will be a scaled down
version of the original. The user may choose to scale the output of intermediate oper-
ations to prevent small values being zeroed out

Note 4 Refer to the project, 2837x_vcu_rfft_128, in the examples folder for a demonstra-
tion of the entire process

See also:
CFFT_pack, CFFT_unpack, CFFT_conjugate

Feb 19, 2015 44

Application Programming Interface (VCU2)

6.3 Cyclic Redundancy Check (VCU2)

Data Structures

_CRC_Obj_

Defines

INIT_CRC16

INIT_CRC24

INIT_CRC32

INIT_CRC8

Enumerations

CRC_parity_e

Functions

uint32_t CRC_bitReflect (uint32_t valToReverse, int16_t bitWidth)

void CRC_init16Bit (CRC_Handle hndCRC)

void CRC_init24Bit (CRC_Handle hndCRC)

void CRC_init32Bit (CRC_Handle hndCRC)

void CRC_init8Bit (CRC_Handle hndCRC)

uint16_t CRC_pow2 (uint16_t power)

void CRC_reset (void)

void CRC_run16BitPoly1 (CRC_Handle hndCRC)

void CRC_run16BitPoly1Reflected (CRC_Handle hndCRC)

void CRC_run16BitPoly2 (CRC_Handle hndCRC)

void CRC_run16BitPoly2Reflected (CRC_Handle hndCRC)

void CRC_run16BitReflectedTableLookupC (CRC_Handle hndCRC)

void CRC_run16BitTableLookupC (CRC_Handle hndCRC)

void CRC_run24Bit (CRC_Handle hndCRC)

void CRC_run24BitReflected (CRC_Handle hndCRC)

void CRC_run24BitReflectedTableLookupC (CRC_Handle hndCRC)

void CRC_run24BitTableLookupC (CRC_Handle hndCRC)

void CRC_run32BitPoly1 (CRC_Handle hndCRC)

Feb 19, 2015 45

Application Programming Interface (VCU2)

void CRC_run32BitPoly1Reflected (CRC_Handle hndCRC)

void CRC_run32BitPoly2 (CRC_Handle hndCRC)

void CRC_run32BitPoly2Reflected (CRC_Handle hndCRC)

void CRC_run32BitReflectedTableLookupC (CRC_Handle hndCRC)

void CRC_run32BitTableLookupC (CRC_Handle hndCRC)

void CRC_run8Bit (CRC_Handle hndCRC)

void CRC_run8BitReflected (CRC_Handle hndCRC)

void CRC_run8BitTableLookupC (CRC_Handle hndCRC)

6.3.1 Data Structure Documentation

6.3.1.1 _CRC_Obj_

Definition:
typedef struct
{

uint32_t seedValue;
uint16_t nMsgBytes;
CRC_parity_e parity;
uint32_t crcResult;
void *pMsgBuffer;
void *pCrcTable;
void (*init)(void *);
void (*run)(void *);

}
_CRC_Obj_

Members:
seedValue Initial value of the CRC calculation.
nMsgBytes the number of bytes in the message buffer
parity start the CRC from the low byte (CRC_parity_even) or high byte

(CRC_parity_odd) of the first word (16-bit)
crcResult the calculated CRC
pMsgBuffer Pointer to the message buffer.
pCrcTable Pointer to the CRC lookup table.
init Function pointer to CRC initialization routine.
run Function pointer to CRC computation routine.

Description:
CRC structure.

Feb 19, 2015 46

Application Programming Interface (VCU2)

6.3.2 Define Documentation

6.3.2.1 INIT_CRC16

Definition:
#define INIT_CRC16

Description:
Initial CRC Register Value.

6.3.2.2 INIT_CRC24

Definition:
#define INIT_CRC24

Description:
Initial CRC Register Value.

6.3.2.3 INIT_CRC32

Definition:
#define INIT_CRC32

Description:
Initial CRC Register Value.

6.3.2.4 INIT_CRC8

Definition:
#define INIT_CRC8

Description:
Initial CRC Register Value.

6.3.3 Typedef Documentation

6.3.3.1 CRC_Handle

Definition:
typedef CRC_Obj *CRC_Handle

Description:
Handle to the CRC structure.

6.3.3.2 CRC_Obj

Definition:
typedef struct _CRC_Obj_ CRC_Obj

Feb 19, 2015 47

Application Programming Interface (VCU2)

Description:
CRC structure.

6.3.4 Enumeration Documentation

6.3.4.1 CRC_parity_e

Description:
Parity enumeration.

The parity is used by the CRC algorithm to determine whether to begin calculations
from the low byte (EVEN) or from the high byte (ODD) of the first word (16-bit) in the
message.

For example, if your message had 10 bytes and started at the address 0x8000 but the
first byte was at the high byte position of the first 16-bit word, the user would call the
CRC function with odd parity i.e. CRC_parity_odd

Address: HI LO

0x8000 : B0 XX

0x8001 : B2 B1

0x8002 : B4 B3

0x8003 : B6 B5

0x8004 : B8 B7

0x8005 : XX B9

However, if the first byte was at the low byte position of the first 16-bit word, the user
would call the CRC function with even parity i.e. CRC_parity_even

Address: HI LO

0x8000 : B1 B0

0x8001 : B3 B2

0x8002 : B5 B4

0x8003 : B7 B6

0x8004 : B9 B8

Enumerators:
CRC_parity_even Even parity, CRC starts at the low byte of the first word (16-bit).
CRC_parity_odd Odd parity, CRC starts at the high byte of the first word (16-bit).
CRC_parity_even Even parity, CRC starts at the low byte of the first word.
CRC_parity_odd Odd parity, CRC starts at the high byte of the first word.

6.3.5 Function Documentation

6.3.5.1 CRC_bitReflect

Bit-reverse a value.

Feb 19, 2015 48

Application Programming Interface (VCU2)

Prototype:
uint32_t
CRC_bitReflect(uint32_t valToReverse,

int16_t bitWidth)

Description:
Bit reverse a given hex value, The number of bits must be a power of 2

Parameters:
valToReverse Value to reverse
bitWidth Bit-width of the input, must be a power of 2

Returns:
bit-reversed value

6.3.5.2 CRC_init16Bit

Initializes the CRC object.

Prototype:
void
CRC_init16Bit(CRC_Handle hndCRC)

Description:
Clears the CRCMSGFLIP bit is cleared ensuring the input is interpreted in normal
bit-order

Parameters:
← hndCRC handle to the CRC object

6.3.5.3 CRC_init24Bit

Initializes the CRC object.

Prototype:
void
CRC_init24Bit(CRC_Handle hndCRC)

Description:
Clears the CRCMSGFLIP bit is cleared ensuring the input is interpreted in normal
bit-order

Parameters:
← hndCRC handle to the CRC object

6.3.5.4 CRC_init32Bit

Initializes the CRC object.

Prototype:
void
CRC_init32Bit(CRC_Handle hndCRC)

Description:
Clears the CRCMSGFLIP bit is cleared ensuring the input is interpreted in normal
bit-order

Feb 19, 2015 49

Application Programming Interface (VCU2)

Parameters:
← hndCRC handle to the CRC object

6.3.5.5 CRC_init8Bit

Initializes the CRC object.

Prototype:
void
CRC_init8Bit(CRC_Handle hndCRC)

Description:
Clears the CRCMSGFLIP bit is cleared ensuring the input is interpreted in normal
bit-order

Parameters:
← hndCRC handle to the CRC object

6.3.5.6 CRC_pow2

power of 2

Prototype:
uint16_t
CRC_pow2(uint16_t power)

Description:
recursive function to calculate a positive integer that is a power of two

Parameters:
power The exponent of two

Returns:
an integer that is a power of two

6.3.5.7 CRC_reset

Workaround to the silicon issue of first VCU calculation on power up being erroneous.

Prototype:
void
CRC_reset(void)

Description:
Details Due to the internal power-up state of the VCU module, it is possible that the
first CRC result will be incorrect. This condition applies to the first result from each
of the eight CRC instructions. This rare condition can only occur after a power-on
reset, but will not necessarily occur on every power on. A warm reset will not cause
this condition to reappear. Workaround(s): The application can reset the internal VCU
CRC logic by performing a CRC calculation of a single byte in the initialization routine.
This routine only needs to perform one CRC calculation and can use any of the CRC
instructions

Feb 19, 2015 50

Application Programming Interface (VCU2)

6.3.5.8 void CRC_run16BitPoly1 (CRC_Handle hndCRC)

Runs the CRC routine using polynomial 0x8005.

Calculates the 16-bit CRC using polynomial 0x8005 on the VCU. Depending on the
parity chosen the CRC begins at either the low byte (PARITY_LOWBYTE) or the high
byte (PARITY_HIGHBYTE) of the first word (16-bit).

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.9 CRC_run16BitPoly1Reflected

Runs the 16-bit CRC routine using polynomial 0x8005 with the input bits reversed.

Prototype:
void
CRC_run16BitPoly1Reflected(CRC_Handle hndCRC)

Description:
By setting the CRCMSGFLIP bit, the input is fed through the VCU 16-bit CRC calcu-
lator (polynomial 0x8005) in reverse bit order

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.10 CRC_run16BitPoly2

Runs the CRC routine using polynomial 0x1021.

Prototype:
void
CRC_run16BitPoly2(CRC_Handle hndCRC)

Description:
Calculates the 16-bit CRC using polynomial 0x1021 on the VCU. Depending on the
parity chosen the CRC begins at either the low byte (PARITY_LOWBYTE) or the high
byte (PARITY_HIGHBYTE) of the first word (16-bit).

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

Feb 19, 2015 51

Application Programming Interface (VCU2)

6.3.5.11 CRC_run16BitPoly2Reflected

Runs the 16-bit CRC routine using polynomial 0x1021 with the input bits reversed.

Prototype:
void
CRC_run16BitPoly2Reflected(CRC_Handle hndCRC)

Description:
By setting the CRCMSGFLIP bit, the input is fed through the VCU 16-bit CRC calcu-
lator (polynomial 0x1021) in reverse bit order

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.12 CRC_run16BitReflectedTableLookupC

C table-lookup 16-bit CRC calculation(reflected algorithm).

Prototype:
void
CRC_run16BitReflectedTableLookupC(CRC_Handle hndCRC)

Description:
The CRC is calculated using a table lookup method, where each byte of the input is
an index into the table. The value at that index is XOR’d into a variable called the
accumulator. Once the final byte’s CRC is looked up and accumulated we get the
CRC for the entire message block

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

See also:
http://www.ross.net/crc/download/crc_v3.txt

6.3.5.13 CRC_run16BitTableLookupC

C table-lookup 16-bit CRC calculation.

Prototype:
void
CRC_run16BitTableLookupC(CRC_Handle hndCRC)

Description:
The CRC is calculated using a table lookup method, where each byte of the input is
an index into the table. The value at that index is XOR’d into a variable called the
accumulator. Once the final byte’s CRC is looked up and accumulated we get the
CRC for the entire message block

Feb 19, 2015 52

http://www.ross.net/crc/download/crc_v3.txt

Application Programming Interface (VCU2)

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

See also:
http://www.ross.net/crc/download/crc_v3.txt

6.3.5.14 CRC_run24Bit

Runs the CRC routine.

Prototype:
void
CRC_run24Bit(CRC_Handle hndCRC)

Description:
Calculates the 24-bit CRC using polynomial 0x5d6dcb on the VCU. Depending on the
parity chosen the CRC begins at either the low byte (PARITY_LOWBYTE) or the high
byte (PARITY_HIGHBYTE) of the first word (16-bit).

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.15 CRC_run24BitReflected

Runs the 24-bit CRC routine using polynomial 0x5d6dcb with the input bits reversed.

Prototype:
void
CRC_run24BitReflected(CRC_Handle hndCRC)

Description:
By setting the CRCMSGFLIP bit, the input is fed through the VCU 24-bit CRC calcu-
lator (polynomial 0x5d6dcb) in reverse bit order

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.16 CRC_run24BitReflectedTableLookupC

C table-lookup 24-bit CRC calculation(reflected algorithm).

Prototype:
void
CRC_run24BitReflectedTableLookupC(CRC_Handle hndCRC)

Feb 19, 2015 53

http://www.ross.net/crc/download/crc_v3.txt

Application Programming Interface (VCU2)

Description:
The CRC is calculated using a table lookup method, where each byte of the input is
an index into the table. The value at that index is XOR’d into a variable called the
accumulator. Once the final byte’s CRC is looked up and accumulated we get the
CRC for the entire message block

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

See also:
http://www.ross.net/crc/download/crc_v3.txt

6.3.5.17 CRC_run24BitTableLookupC

C table-lookup 24-bit CRC calculation.

Prototype:
void
CRC_run24BitTableLookupC(CRC_Handle hndCRC)

Description:
The CRC is calculated using a table lookup method, where each byte of the input is
an index into the table. The value at that index is XOR’d into a variable called the
accumulator. Once the final byte’s CRC is looked up and accumulated we get the
CRC for the entire message block

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

See also:
http://www.ross.net/crc/download/crc_v3.txt

6.3.5.18 CRC_run32BitPoly1

Runs the 32-bit CRC routine using polynomial 0x04c11db7.

Prototype:
void
CRC_run32BitPoly1(CRC_Handle hndCRC)

Description:
Calculates the 32-bit CRC using polynomial 0x04c11db7 on the VCU. Depending on
the parity chosen the CRC begins at either the low byte (PARITY_LOWBYTE) or the
high byte (PARITY_HIGHBYTE) of the first word (16-bit).

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Feb 19, 2015 54

http://www.ross.net/crc/download/crc_v3.txt
http://www.ross.net/crc/download/crc_v3.txt

Application Programming Interface (VCU2)

Parameters:
← hndCRC handle to the CRC object

6.3.5.19 CRC_run32BitPoly1Reflected

Runs the 32-bit CRC routine using polynomial 0x04c11db7 with the input bits reversed.

Prototype:
void
CRC_run32BitPoly1Reflected(CRC_Handle hndCRC)

Description:
By setting the CRCMSGFLIP bit, the input is fed through the VCU 32-bit CRC calcu-
lator (polynomial 0x04c11db7) in reverse bit order

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.20 CRC_run32BitPoly2

Runs the 32-bit CRC routine using polynomial 0x1edc6f41.

Prototype:
void
CRC_run32BitPoly2(CRC_Handle hndCRC)

Description:
Calculates the 32-bit CRC using polynomial 0x1edc6f41 on the VCU. Depending on
the parity chosen the CRC begins at either the low byte (PARITY_LOWBYTE) or the
high byte (PARITY_HIGHBYTE) of the first word (16-bit).

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.21 CRC_run32BitPoly2Reflected

Runs the 32-bit CRC routine using polynomial 0x1edc6f41 with the input bits reversed.

Prototype:
void
CRC_run32BitPoly2Reflected(CRC_Handle hndCRC)

Description:
By setting the CRCMSGFLIP bit, the input is fed through the VCU 32-bit CRC calcu-
lator (polynomial 0x1edc6f41) in reverse bit order

Feb 19, 2015 55

Application Programming Interface (VCU2)

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.22 CRC_run32BitReflectedTableLookupC

C table-lookup 32-bit CRC calculation(reflected algorithm).

Prototype:
void
CRC_run32BitReflectedTableLookupC(CRC_Handle hndCRC)

Description:
The CRC is calculated using a table lookup method, where each byte of the input is
an index into the table. The value at that index is XOR’d into a variable called the
accumulator. Once the final byte’s CRC is looked up and accumulated we get the
CRC for the entire message block

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

See also:
http://www.ross.net/crc/download/crc_v3.txt

6.3.5.23 CRC_run32BitTableLookupC

C table-lookup 32-bit CRC calculation.

Prototype:
void
CRC_run32BitTableLookupC(CRC_Handle hndCRC)

Description:
The CRC is calculated using a table lookup method, where each byte of the input is
an index into the table. The value at that index is XOR’d into a variable called the
accumulator. Once the final byte’s CRC is looked up and accumulated we get the
CRC for the entire message block

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

See also:
http://www.ross.net/crc/download/crc_v3.txt

Feb 19, 2015 56

http://www.ross.net/crc/download/crc_v3.txt
http://www.ross.net/crc/download/crc_v3.txt

Application Programming Interface (VCU2)

6.3.5.24 CRC_run8Bit

Calculate the 8-bit CRC using polynomial 0x7.

Prototype:
void
CRC_run8Bit(CRC_Handle hndCRC)

Description:
Calculates the 8-bit CRC using polynomial 0x7 on the VCU. Depending on the parity
chosen the CRC begins at either the low byte (PARITY_LOWBYTE) or the high byte
(PARITY_HIGHBYTE) of the first word (16-bit).

Note:
the size of the message (bytes) is limited to 65535 bytes. If attempting to process
a larger message, the user must break it into pieces of size 65535 or smaller,
and successively run the CRC on each block, with the CRC result of one block
becoming the seed value for the next block. An example of this is shown in the
FLASH build configuration of the example 2837x_vcu2_crc_8.

Parameters:
← hndCRC handle to the CRC object

6.3.5.25 CRC_run8BitReflected

Runs the 8-bit CRC routine using polynomial 0x7 with the input bits reversed.

Prototype:
void
CRC_run8BitReflected(CRC_Handle hndCRC)

Description:
By setting the CRCMSGFLIP bit, the input is fed through the VCU 8-bit CRC calculator
(polynomial 0x7) in reverse bit order

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

6.3.5.26 CRC_run8BitTableLookupC

C table-lookup 8-bit CRC calculation.

Prototype:
void
CRC_run8BitTableLookupC(CRC_Handle hndCRC)

Description:
The CRC is calculated using a table lookup method, where each byte of the input is
an index into the table. The value at that index is XOR’d into a variable called the
accumulator. Once the final byte’s CRC is looked up and accumulated we get the
CRC for the entire message block

Feb 19, 2015 57

Application Programming Interface (VCU2)

Note:
the size of the message (bytes) is limited to 65535 bytes Please see the notes for the
function CRC_run8Bit for details

Parameters:
← hndCRC handle to the CRC object

See also:
http://www.ross.net/crc/download/crc_v3.txt

Feb 19, 2015 58

http://www.ross.net/crc/download/crc_v3.txt

Application Programming Interface (VCU2)

6.4 Viterbi Decoding (VCU2)

Data Structures

_VITERBI_DECODER_Obj_

Enumerations

VITERBIMODE_e

Functions

void VITERBI_DECODER_initK4CR12 (VITERBI_DECODER_Handle hndVITDe-
coder)

void VITERBI_DECODER_initK7CR12 (VITERBI_DECODER_Handle hndVITDe-
coder)

void VITERBI_DECODER_rescaleK4CR12 (VITERBI_DECODER_Handle hndVIT-
Decoder)

void VITERBI_DECODER_rescaleK7CR12 (VITERBI_DECODER_Handle hndVIT-
Decoder)

void VITERBI_DECODER_runK4CR12 (VITERBI_DECODER_Handle hndVITDe-
coder)

void VITERBI_DECODER_runK7CR12 (VITERBI_DECODER_Handle hndVITDe-
coder)

6.4.1 Data Structure Documentation

6.4.1.1 _VITERBI_DECODER_Obj_

Definition:
typedef struct
{

int16_t *pInBuffer;
uint16_t *pOutBuffer;
uint16_t *pTransitionHistory;
const int32_t *pBMSELInit;
int16_t stateMetricInit;
int16_t nBits;
int16_t constraintLength;
int16_t nStates;
int16_t codeRate;
VITERBIMODE_e mode;
uint16_t *pTransitionStart1;
uint16_t *pTransitionStart2;

Feb 19, 2015 59

Application Programming Interface (VCU2)

uint16_t *pTransitionWrap1;
uint16_t *pTransitionWrap2;
uint16_t *pTransitionTemp;
void (*init)(void *);
void (*run)(void *);
void (*rescale)(void *);

}
_VITERBI_DECODER_Obj_

Members:
pInBuffer Input buffer pointer.
pOutBuffer Output buffer pointer.
pTransitionHistory Transition History pointer.
pBMSELInit Initialization value for the BMSEL register.
stateMetricInit Initialization value for the state metrics.
nBits Total number of bits to be decoded.
constraintLength Constraint Length, i.e. K.
nStates HASH(0x2f40630)
codeRate The symbol code rate.
mode Viterbi mode enumerator.
pTransitionStart1 Points to the start of the tranistion history buffer.
pTransitionStart2 Points to the mid of the tranistion history buffer.
pTransitionWrap1 Points to the mid of the tranistion history buffer.
pTransitionWrap2 Points to the end of the tranistion history buffer.
pTransitionTemp Points to a temporary(scratch) tranistion history buffer.
init Function pointer to VITERBI initialization routine.
run Function pointer to VITERBI computation routine.
rescale Function pointer to VITERBI rescale routine.

Description:
VITERBI Decoder Structure.

6.4.2 Enumeration Documentation

6.4.2.1 VITERBIMODE_e

Description:
The Viterbi mode enumerator.

Enumerators:
VITERBIMODE_DECODEALL Decodes all output bits, upto a max of 256, at once.

VITERBIMODE_OVERLAPINIT no traceback is performed

Use window overlap method, This is used for the first block where state metrics and
transition history is updated but

VITERBIMODE_OVERLAPDECODE Use window overlap method, update transi-
tions/metrics for the current block (ith block), run a traceback using the ith and (i-1)st
block’s transition history but only decode the (i-1)st block

Feb 19, 2015 60

Application Programming Interface (VCU2)

VITERBIMODE_OVERLAPLAST Trace back and decode the last block in overlap
window method.

6.4.3 Function Documentation

6.4.3.1 VITERBI_DECODER_initK4CR12

Initializes the VITERBI object (constraint length 4, code rate 1/2).

Prototype:
void
VITERBI_DECODER_initK4CR12(VITERBI_DECODER_Handle
hndVITDecoder)

Description:
Sets the constraint length of the viterbi object and initialized the state metrcs to the
object element, stateMetricInit

Parameters:
← hndVITDecoder handle to the VITERBI object

6.4.3.2 VITERBI_DECODER_initK7CR12

Initializes the VITERBI object (constraint length 7, code rate 1/2).

Prototype:
void
VITERBI_DECODER_initK7CR12(VITERBI_DECODER_Handle
hndVITDecoder)

Description:
Sets the constraint length of the viterbi object and initialized the state metrcs to the
object element, stateMetricInit

Note:
This function uses a global variable to save off the metric registers and is, therefore,
non re-entrant

Parameters:
← hndVITDecoder handle to the VITERBI object

6.4.3.3 VITERBI_DECODER_rescaleK4CR12

Rescales the viterbi state metrics (constraint length 4, code rate 1/2).

Prototype:
void
VITERBI_DECODER_rescaleK4CR12(VITERBI_DECODER_Handle
hndVITDecoder)

Description:
Rescale the state metrics by finding the lowest metric and dividing the rest by it. This
prevents overflow between successive decoder stages.

Feb 19, 2015 61

Application Programming Interface (VCU2)

Parameters:
← hndVITDecoder handle to the VITERBI object

6.4.3.4 VITERBI_DECODER_rescaleK7CR12

Rescales the viterbi state metrics (constraint length 7, code rate 1/2).

Prototype:
void
VITERBI_DECODER_rescaleK7CR12(VITERBI_DECODER_Handle
hndVITDecoder)

Description:
Rescale the state metrics by finding the lowest metric and dividing the rest by it. This
prevents overflow between successive decoder stages.

Parameters:
← hndVITDecoder handle to the VITERBI object

6.4.3.5 VITERBI_DECODER_runK4CR12

Runs the VITERBI decoder for constraint length 4, code rate 1/2.

Prototype:
void
VITERBI_DECODER_runK4CR12(VITERBI_DECODER_Handle
hndVITDecoder)

Description:
The viterbi decode is done using a window overlap method with 4 modes of operation
:

1. VITERBIMODE_DECODEALL, a one-shot decode mode typically used for header
information where the entire block of data is processed through the trellis and de-
coded

2. VITERBIMODE_OVERLAPINIT, window overlap method – this is used for the first
block where state metrics and transition history is updated but no traceback is per-
formed

3. VITERBIMODE_OVERLAPDECODE, window overlap method – update transi-
tions/metrics for the current block (ith block), run a traceback using the ith and (i-1)st
block’s transition history but only decode the (i-1)st block

4. VITERBIMODE_OVERLAPLAST, window overlap method– trace back and decode
the last block

The window overlap method requires the transition history of two successive blocks
to be recorded. The transition history buffer is used in a circular fashion and requires
5 pointers:

pTransitionHistory(hist_p): start of the transition history buffer
pTransitionStart1(S1_p): points to where the transition update should start
pTransitionStart2(S2_p: points to the mid point of the overlap(S1_p +
4∗nUnencodedBits)
pTransitionWrap1(W1_p): points to where trace overlap 2 should go (wrap, S1_p +
4∗nUnencodedBits)

Feb 19, 2015 62

Application Programming Interface (VCU2)

pTransitionWrap2(W2_p): points to the end of the overlap(S1_p +
2∗4∗nUnencodedBits)

CBITS = 128(coded bits per block)
UBITS = CBITS/2 = 64(uncoded bits per block)
UWORDS = 4 (4 words (16-bits) required to store UBITS)

Transition history(bits per stage)--->
<-------64 bits----->
+----+----+----+----+ ^

S1_p->hist_p->| | | | | |
^ | | | | | |
| | | | | | |
| | | | | | |

4*UBITS | | | | | |
v | | | | | |

S2_p->W1_p->| | | | | 128 stages
^ | | | | | |
| | | | | | |
| | | | | | |

4*UBITS | | | | | |
v | | | | | |
W2_p->| | | | | |

+----+----+----+----+ v

Parameters:
← hndVITDecoder handle to the VITERBI object

6.4.3.6 void VITERBI_DECODER_runK7CR12 (VITERBI_DECODER_Handle
hndVITDecoder)

Runs the VITERBI decoder for constraint length 7, code rate 1/2.

Parameters:
← hndVITDecoder handle to the VITERBI object

See also:
VITERBI_DECODER_runK4CR12 for a description of the window overlap method

Feb 19, 2015 63

Application Programming Interface (VCU2)

6.5 Reed Solomon Decoder (VCU2)

Data Structures

_REEDSOLOMON_DECODER_Obj_

Defines

RS_BLOCK_K
RS_BLOCK_N
RS_BLOCK_T
RS_NROOTS

Functions

void REEDSOLOMON_DECODER_berlekampMassey (REED-
SOLOMON_DECODER_Handle hndRSDecoder)
void REEDSOLOMON_DECODER_calcSyndrome (REED-
SOLOMON_DECODER_Handle hndRSDecoder, int16_t ∗pData, int16_t nBytes)
void REEDSOLOMON_DECODER_chienForney (REED-
SOLOMON_DECODER_Handle hndRSDecoder, int16_t nBytes)
void REEDSOLOMON_DECODER_initN255K239 (REED-
SOLOMON_DECODER_Handle hndRSDecoder, int16_t ∗pSyndrome, int16_t
∗pLambda, int16_t ∗pOmega, int16_t ∗pPackedAlpha, int16_t ∗pPackedBeta, int16_t
∗pRS_expTable, int16_t ∗pRS_logTable, ERROR_LOCVAL_Obj ∗pErrorLoc)
void REEDSOLOMON_DECODER_runN255K239 (REED-
SOLOMON_DECODER_Handle hndRSDecoder, int16_t ∗pData, int16_t nBytes)

6.5.1 Data Structure Documentation

6.5.1.1 _REEDSOLOMON_DECODER_Obj_

Definition:
typedef struct
{

uint16_t _n;
uint16_t _k;
uint16_t _t;
uint16_t nRoots;
int16_t *pSyndrome;
int16_t *pLambda;
int16_t *pOmega;
int16_t *pPackedAlpha;
int16_t *pPackedBeta;
int16_t *pRS_expTable;
int16_t *pRS_logTable;
ERROR_LOCVAL_Obj *pErrorLoc;

Feb 19, 2015 64

Application Programming Interface (VCU2)

void (*init)(void *,
int16_t *,
int16_t *,
int16_t *,
int16_t *,
int16_t *,
int16_t *,
int16_t *,
ERROR_LOCVAL_Obj *);

void (*run)(void *,
int16_t *,
int16_t);

}
_REEDSOLOMON_DECODER_Obj_

Members:
_n number of codeword symbols (bytes) in a block
_k number of message symbols (bytes) in a block
_t number of correctable errors in the block
nRoots number of roots for the code generator polynomial
pSyndrome pointer to the syndromes
pLambda pointer to the Lambdas
pOmega pointer to the Omega
pPackedAlpha Pointer to the roots of the code generator polynomial.
pPackedBeta Pointer to the first 2t elements of the Galois Field.
pRS_expTable Pointer to the lookup table (roots of the extension Galois Field) that

converts index to decimal form.
pRS_logTable Pointer to the lookup table (roots of the extension Galois Field) that

converts decimal to index form.
pErrorLoc Pointer to the error (location, value) pairs.
init Function pointer to Reed Solomon Decoder initialization routine.
run Function pointer to Reed Solomon Decoder computation routine.

Description:
Reed-Solomon Decoder structure.

6.5.2 Define Documentation

6.5.2.1 RS_BLOCK_K

Definition:
#define RS_BLOCK_K

Description:
Message size.

Feb 19, 2015 65

Application Programming Interface (VCU2)

6.5.2.2 RS_BLOCK_N

Definition:
#define RS_BLOCK_N

Description:
Encoded block size.

6.5.2.3 RS_BLOCK_T

Definition:
#define RS_BLOCK_T

Description:
number of correctable errors

6.5.2.4 RS_NROOTS

Definition:
#define RS_NROOTS

Description:
Number of code generator polynomial roots.

6.5.3 Typedef Documentation

6.5.3.1 REEDSOLOMON_DECODER_Handle

Definition:
typedef REEDSOLOMON_DECODER_Obj *REEDSOLOMON_DECODER_Handle

Description:
Handle to the Reed-Solomon Decoder structure.

6.5.3.2 REEDSOLOMON_DECODER_Obj

Definition:
typedef struct _REEDSOLOMON_DECODER_Obj_

REEDSOLOMON_DECODER_Obj

Description:
Reed-Solomon Decoder structure.

6.5.4 Function Documentation

6.5.4.1 REEDSOLOMON_DECODER_berlekampMassey

Error locator polynomial calculation (inversionless Berlekamp Massey Method).

Feb 19, 2015 66

Application Programming Interface (VCU2)

Prototype:
void
REEDSOLOMON_DECODER_berlekampMassey(REEDSOLOMON_DECODER_Handle
hndRSDecoder)

Parameters:
← hndRSDecoder handle to the Reed Solomon Decoder object

Note:
Requires the lambda array to be even aligned

6.5.4.2 void REEDSOLOMON_DECODER_calcSyndrome
(REEDSOLOMON_DECODER_Handle hndRSDecoder, int16_t ∗ pData,
int16_t nBytes)

Syndrome calculation function (Horner’s Method).

Parameters:
← hndRSDecoder handle to the Reed Solomon Decoder object
← pData pointer to the data
← nBytes number of bytes in the message block

Note:
Requires the syndrome array to be even aligned

6.5.4.3 void REEDSOLOMON_DECODER_chienForney
(REEDSOLOMON_DECODER_Handle hndRSDecoder, int16_t nBytes)

caculate error locations using Chien search and magnitude using Forney’s algorithm

Parameters:
← hndRSDecoder handle to the Reed Solomon Decoder object
← nBytes number of bytes in the message block

Note:
Requires the omega and error location arrays to be even aligned

6.5.4.4 void REEDSOLOMON_DECODER_initN255K239
(REEDSOLOMON_DECODER_Handle hndRSDecoder, int16_t ∗
pSyndrome, int16_t ∗ pLambda, int16_t ∗ pOmega, int16_t ∗ pPackedAlpha,
int16_t ∗ pPackedBeta, int16_t ∗ pRS_expTable, int16_t ∗ pRS_logTable,
ERROR_LOCVAL_Obj ∗ pErrorLoc)

Initializes the Reed Solomon Decoder object (n,k = 255, 239).

Parameters:
← hndRSDecoder handle to the Reed Solomon Decoder object
← pSyndrome Pointer to the syndromes
← pLambda Pointer to the error locator polynomial coefficients
← pOmega Pointer to the error magnitude polynomial coefficients

Feb 19, 2015 67

Application Programming Interface (VCU2)

← pPackedAlpha Pointer to the roots of the generator polynomial x+ αi

← pPackedBeta Pointer to the roots of the generator polynomial x+ βi

← pRS_expTable Pointer to the lookup table that converts index to decimal form
← pRS_logTable Pointer to the lookup table that converts decimal to index form
← pErrorLoc Pointer to the error (location, value) pairs

Note:
Requires the data array to be even aligned

6.5.4.5 void REEDSOLOMON_DECODER_runN255K239
(REEDSOLOMON_DECODER_Handle hndRSDecoder, int16_t ∗ pData,
int16_t nBytes)

Runs the Reed Solomon Decoder (n,k = 255, 239).

Parameters:
← hndRSDecoder handle to the Reed Solomon Decoder object
← pData pointer to the received message block
← nBytes number of bytes in the message block

Feb 19, 2015 68

Application Programming Interface (VCU2)

6.6 De-Interleaver (VCU2)

Data Structures

_DEINTERLEAVER_Obj_

Functions

void DEINTERLEAVER_run (DEINTERLEAVER_Handle hndDEINTERLEAVER)

6.6.1 Data Structure Documentation

6.6.1.1 _DEINTERLEAVER_Obj_

Definition:
typedef struct
{

uint16_t *pInBuffer;
uint16_t *pOutBuffer;
uint16_t *pSymbol;
uint16_t n;
uint16_t m;
uint16_t b;
uint16_t v;
uint16_t a;
uint16_t u;
uint16_t n_i;
uint16_t n_j;
uint16_t m_i;
uint16_t m_j;
void (*init)(void *);
void (*run)(void *);

}
_DEINTERLEAVER_Obj_

Members:
pInBuffer Pointer to the input buffer.
pOutBuffer Pointer to the input buffer.
pSymbol Pointer to symbol storage.
n number of OFDM symbols in each interleaving block
m number of sub-carriers in each OFDM symbol
b beta
v mu
a alpha
u upsilon
n_i Circular shift of the rows.
n_j Circular shift of the rows.

Feb 19, 2015 69

Application Programming Interface (VCU2)

m_i Circular shift of the columns.
m_j Circular shift of the columns.
init Function pointer to DEINTERLEAVER initialization routine (NULL as of current

release).
run Function pointer to DEINTERLEAVER computation routine.

Description:
De-interleaver structure.

6.6.2 Function Documentation

6.6.2.1 DEINTERLEAVER_run

Runs the DEINTERLEAVER routine.

Prototype:
void
DEINTERLEAVER_run(DEINTERLEAVER_Handle hndDEINTERLEAVER)

Description:
The de-interleaver equations are:

J = (j×nj + i×ni)%n

I = (i×mi + J×mj)%m

The interleaver equations are:

i = (a× I − u× J)%m

j = (b× J − v × i)%n

b = βj

v = µij = βj × ni
a = αi

u = υij = alphai ×mj

(i,j) - original bit position (I,J) - interleaved position

Parameters:
← hndDEINTERLEAVER handle to the DEINTERLEAVER object

Feb 19, 2015 70

Benchmarks

7 Benchmarks
The benchmarks were obtained with the following compiler settings for the libraries:

VCU Type 0 (ISA_C2800)

-v28 -ml -mt --vcu_support=vcu0 -g --verbose_diagnostics
--diag_warning=225 --display_error_number --issue_remarks

VCU Type 2 (ISA_C2800)

-v28 -ml -mt --vcu_support=vcu2 -g --verbose_diagnostics
--diag_warning=225 --display_error_number --issue_remarks

The ISA_C28FPU32 build configuration adds the –float_support=fpu32 in addition to those
specified above. The tables below list the performance metrics for all the library routines.
These numbers were obtained by profiling the code in the examples directory

Feb 19, 2015 71

Benchmarks

Module Function Cycles1

CRC CRC_reset 11
getCRC8_vcu 1.515 2

getCRC32_vcu 1.515 2

getCRC16P2_vcu 1.515 2

getCRC16P1_vcu 1.515 2

FFT cfft16_init 13
cfft16_flip_re_img 223, N = 128

414, N = 256
798, N = 512

cfft16_flip_re_img_conj 532, N = 64
1043, N = 128
2067, N = 256

cifft16_pack_asm 1182, N = 64
2271, N = 128
4511, N = 256

cfft16_brev 348, N = 64
459, N = 128
1655, N = 256

cfft16_unpack_asm 1218, N = 128
2339, N = 256
4643, N = 512

cfft16_64p_calc 1402
cfft16_128p_calc 3681
cfft16_256p_calc 8135

Viterbi cnvDec_asm 5921 3

cnvDecInit_asm 92
cnvDecMetricRescale_asm 212

Table 7.1: Benchmark for the VCU Type 0 Library Routines

1include call, return and store (if required) instructions
2average count per byte for a message size of 128 bytes
3Viterbi decoder block size is 128 coded bits, mode: overlap decode

Feb 19, 2015 72

Benchmarks

Module Function Cycles1

CRC CRC_reset 11
CRC_init8Bit 11
CRC_run8Bit 1.437 2

CRC_run8BitReflected 1.515 2

CRC_init16Bit 11
CRC_run16BitPoly1 1.437 2

CRC_run16BitPoly2 1.437 2

CRC_run16BitPoly1Reflected 1.515 2

CRC_run16BitPoly2Reflected 1.515 2

CRC_init24Bit 11
CRC_run24Bit 1.4372

CRC_run24BitReflected 1.5152

CRC_init32Bit 11
CRC_run32BitPoly1 1.414 2

CRC_run32BitPoly2 1.414 2

CRC_run32BitPoly1Reflected 1.492 2

CRC_run32BitPoly2Reflected 1.492 2

FFT CFFT_init32Pt 32
CFFT_run32Pt 330 3

ICFFT_run32Pt 333 3

CFFT_init64Pt 32
CFFT_run64Pt 608 3

ICFFT_run64Pt 641 3

CFFT_init128Pt 32
CFFT_run128Pt 1494 3

ICFFT_run128Pt 1495 3

CFFT_init256Pt 32
CFFT_run256Pt 2908 3

ICFFT_run256Pt 3036 3

CFFT_init512Pt 32
CFFT_run512Pt 7011 3

ICFFT_run512Pt 7012 3

CFFT_init1024Pt 32
CFFT_run1024Pt 13920 3

ICFFT_run1024Pt 14435 3

CFFT_conjugate 293, N = 64
549, N = 128
1061, N = 256

CFFT_pack 733, N = 64
1437, N = 128
2845, N = 256

CFFT_unpack 740, N = 128
1443, N = 256
2851, N = 512

Viterbi VITERBI_DECODER_initK4CR12 15
VITERBI_DECODER_runK4CR12 954 4

VITERBI_DECODER_rescaleK4CR12 54
VITERBI_DECODER_initK7CR12 15
VITERBI_DECODER_runK7CR12 949

Continued on next page

Feb 19, 2015 73

Benchmarks

Table 7.2 – continued from previous page
Module Function Cycles

VITERBI_DECODER_rescaleK7CR12 285
Reed-Solomon REEDSOLOMON_DECODER_initN255K239 78

REEDSOLOMON_DECODER_runN255K239 10372
REEDSOLOMON_DECODER_calcSyndrome 1426
REEDSOLOMON_DECODER_berlekampMassey 1311
REEDSOLOMON_DECODER_chienForney 7610

Deinterleaver DEINTERLEAVER_run 773 5

Table 7.2: Benchmark for the VCU Type 2 Library Routines

1include call, return and store (if required) instructions
2average count per byte for a message size of 128 bytes
3VCU Type 2 FFT is more efficient when Nstages = 2k + 6, k ∈ {0, 1, 2}
4Viterbi decoder block size is 128 coded bits, mode: overlap decode
572 sub-carriers (G3 Powerline Communications FCC band)

Feb 19, 2015 74

Benchmarks

Module Function Cycles1

CRC genCRC8Table 47116 3

genCRC16P1Table 57189 3

genCRC16P2Table 57444 3

genCRC32Table 51468 3

getCRC8_cpu 24.234 2 3

getCRC16P1_cpu 31.273 2 3

getCRC16P2_cpu 31.273 2 3

getCRC32_cpu 28.25 2 3

CRC_bitReflect 30.968(max avg) 3 2

CRC_run8BitTableLookupC 35.453 3 2

CRC_run32BitTableLookupC 39.375 3 2

CRC_run32BitReflectedTableLookupC 40.351 3 2

CRC_run24BitTableLookupC 40.398 3 2

CRC_run24BitReflectedTableLookupC 40.375 3 2

CRC_run16BitTableLookupC 31.406 3 2

CRC_run16BitReflectedTableLookupC 31.406 3 2

Viterbi VITERBI_ENCODER_init 114 3

VITERBI_ENCODER_blockUnpack2Bits 16157 3 6

VITERBI_ENCODER_quantizeBits 104496 3 6

VITERBI_ENCODER_runK4CR12 49303 3 6

VITERBI_ENCODER_runK7CR12 47194 3 6

Reed-Solomon REEDSOLOMON_ENCODER_init 54 3 7

REEDSOLOMON_ENCODER_run 412755 3 7

Interleaver INTERLEAVER_findParams 132 4

INTERLEAVER_run 3999 4

Table 7.3: Benchmark for the Library ’C’ Routines

1include call, return and store (if required) instructions
2average count per byte for a message size of 128 bytes
3C routines compiled with default optimization
472 sub-carriers (G3 Powerline Communications FCC band)

Feb 19, 2015 75

Revision History

8 Revision History
V2.10.00.00: Moderate Revision

Shortened, and eliminated when unnecessary, the context save/restores for all
functions
Changed the linker command file and example for the crc_8 example to show how
to run the crc on blocks larger than 65535 bytes
Viterbi Decode - shortened the traceback loops (within the RPTB) from 6 instruc-
tions to 4
Added De-interleaver assembly source code and example
Added Interleaver ‘C’ source code
Added VCU2 Real Inverse FFT source code and examples
Corrected documentation for the RIFFT routines
Eliminated global object definitions (‘extern’ qualifier) from the vcu2 header files
Fixed bug in the rescale routine for Viterbi decode K7CR12 that was causing an
overwrite
Fixed bug with Inverse Berleykamp Massey routine, where size of the local frame
was incorrect

V2.00.00.00: Initial Release
First release of the library to work with VCU types 0, 2
Added legacy VCU0 routines

Feb 19, 2015 76

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhance-
ments, improvements, and other changes to its products and services at any time and to discontinue any product or
service without notice. Customers should obtain the latest relevant information before placing orders and should ver-
ify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance
with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to
support this warranty. Except where mandated by government requirements, testing of all parameters of each product
is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their
products and applications using TI components. To minimize the risks associated with customer products and appli-
cations, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in
which TI products or services are used. Information published by TI regarding third-party products or services does
not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property of the third party,
or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information
with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documenta-
tion. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product
or service voids all express and any implied warranties for the associated TI product or service and is an unfair and
deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI
product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have
executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the
safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible
for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such
safety-critical applications, notwithstanding any applications-related information or support that may be provided by
TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI
products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI
products are specifically designated by TI as military-grade or “enhanced plastic.” Only products designated by TI as
military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI
has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance
with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific
TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that,
if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet
such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf

Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless

www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Feb 19, 2015 77

amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

Feb 19, 2015 78

	Copyright
	Revision Information
	1 Introduction
	2 Other Resources
	3 Library Structure
	4 Using the VCU Library
	5 Application Programming Interface (VCU0)
	5.1 VCU0 Type Defintions
	5.2 Fast Fourier Transform (VCU0)
	5.3 Cyclic Redundancy Check (VCU0)
	5.4 Viterbi Decoding (VCU0)

	6 Application Programming Interface (VCU2)
	6.1 VCU2 Type Defintions
	6.2 Fast Fourier Transform (VCU2)
	6.3 Cyclic Redundancy Check (VCU2)
	6.4 Viterbi Decoding (VCU2)
	6.5 Reed Solomon Decoder (VCU2)
	6.6 De-Interleaver (VCU2)

	7 Benchmarks
	8 Revision History
	IMPORTANT NOTICE

